Van professionele vertalers, bedrijven, webpagina's en gratis beschikbare vertaalbronnen.
à ¤¬à ¥Âà ¤°
à ¤¬à  ¥ Â,à ¤ °
Laatste Update: 2015-10-22
Gebruiksfrequentie: 1
Kwaliteit:
Referentie:
à ¤¬à ¤¿à ¤¯à ¤«
à ¤¬à ¤¿à ¤¯à ¤ «
Laatste Update: 2017-03-12
Gebruiksfrequentie: 1
Kwaliteit:
Referentie:
à ¤¬à ¤¿à ¤¯à ¤« à ¤µà ¥Âà ¤¡à ¤¿à ¤¯à ¤¾à ¥ hd
à ¤¬à ¤¿à ¤¯à ¤ «Ã ¤Âμà  ¥  € à ¤¡à ¤¿à ¤¯à ¤¾à  ¥  ‡ extent
Laatste Update: 2017-03-13
Gebruiksfrequentie: 1
Kwaliteit:
Referentie:
क्यों 🤷🠻†♀ï¸
why 🤷ðŸ»â€â™€ï¸
Laatste Update: 2024-08-12
Gebruiksfrequentie: 1
Kwaliteit:
Referentie:
bf felm è
ice movie è
Laatste Update: 2017-01-25
Gebruiksfrequentie: 1
Kwaliteit:
Referentie:
bf felm èj
ice movie è
Laatste Update: 2017-07-13
Gebruiksfrequentie: 2
Kwaliteit:
Referentie:
अब हम हमें कैसे पर एक संभाल तेजी से देने के लिए यूलर के सूत्र का उपयोग करने के लिए जा रहे हैं किनारे हो जाना एक planar ग्राफ में नोड्स की संख्या से संबंधित। हम करने के लिए जा रहे हैं के दो अन्य तथ्य का उपयोग करें। एक है कि एक planar ग्राफ में हर क्षेत्र में जिक्र किया जा करने के लिए - है है घिरा होना करने के लिए - यह एक क्षेत्र के लिए कम से कम तीन किनारों से। इसे और अधिक हो सकता है कि, लेकिन यह कम से कम तीन हो गया है। यदि आपको लगता है कि तीन बार के बारे में क्षेत्रों की संख्या, किनारों की संख्या हालांकि हम दो बार प्रत्येक किनारे की गिनती कर रहे हैं, कम से कम कि बड़ा हो गया है, क्योंकि प्रत्येक किनारे वास्तव में दो क्षेत्रों में भाग ले सकते हैं। दो बार किनारों की संख्या से भी बड़ा या क्षेत्रों की तीन गुना संख्या के बराबर हो गया है। यूलर का सूत्र नए सिरे से लिखना, हम इस - इस समीकरण नए सिरे से लिखना है, हम यह है। प्रतिस्थापन में, हम यह है। चलो के माध्यम से 3 से गुणा करें। हम 3 एम + 6 â मिल ¤ 3n + 2 मी। दोनों पक्षों से मी घटाना और दोनों पक्षों से 6 घटाना एक और हम एम, किनारों की संख्या प्राप्त, 3n - 6 की तुलना किसी भी बड़ा नहीं हो सकता, जो इस अभिव्यक्ति मैं (एन) में है। अधिकांश किनारों कि हम एक planar ग्राफ में कर सकते हैं अधिक से अधिक नोड्स की संख्या में रेखीय है।
now we're going to use euler's formula to give us a handle on how fast edges grow relative to the number of nodes in a planar graph. we're going to make use of two other facts. one is that every region in a planar graph has to be encapsulated--has to be bounded-- by at least three edges for it to be a region.
Laatste Update: 2019-07-06
Gebruiksfrequentie: 4
Kwaliteit:
Referentie: