From professional translators, enterprises, web pages and freely available translation repositories.
as per our discussion over call
कल की हमारी चर्चा के अनुसार
Last Update: 2024-03-01
Usage Frequency: 2
Quality:
when will be you do
आप कब करेंगे
Last Update: 2024-05-23
Usage Frequency: 1
Quality:
as per our discussion i discussed with my boss
as per our conversation you said that
Last Update: 2024-03-01
Usage Frequency: 2
Quality:
if i die what will be you doing
अगर मैं मर जाऊं तो तुम क्या करोगे
Last Update: 2024-01-07
Usage Frequency: 1
Quality:
as per our conversation your issue will be resolved by thu mar 07.
as per our conversation your issue will be resolved by thu mar 07.
Last Update: 2024-03-03
Usage Frequency: 1
Quality:
as per our discussion on yesterday , the two machines from department have been removed
कल की हमारी चर्चा के अनुसार
Last Update: 2023-02-08
Usage Frequency: 1
Quality:
Reference:
whatever you do, it will be completed very quickly.
app jo bhi kar ba bout bohut jal pura ho
Last Update: 2023-10-15
Usage Frequency: 1
Quality:
Reference:
as per our conversation issue ismessage from flipkart apr 16 08:16 pm as per our conversation your issue will be resolved by wed apr 20. resolved
हमारे वार्तालाप मुद्दे के अनुसार हैflipkart से संदेश apr 16 08: 16 pm हमारी बातचीत के अनुसार आपके मुद्दे को बुध अप्रैल 20 द्वारा हल किया जाएगा।
Last Update: 2024-03-01
Usage Frequency: 2
Quality:
Reference:
will organized get-together part-wise soon with the employees who were not in the previous party at uc. as per our discussion with the chief by-product plant and both the ucm of old and new bpp.
जो कर्मचारी यूसी में पिछली पार्टी में नहीं थे, उनके साथ जल्द ही पार्ट वाइज पार्टी का आयोजन किया जाएगा। उत्पाद संयंत्र द्वारा प्रमुख और पुराने और नए बीपीपी दोनों के यूसीएम के साथ चर्चा के अनुसार।
Last Update: 2021-09-27
Usage Frequency: 2
Quality:
Reference:
i am sixth in the bus that he should always be happy, he will be happy, i will be happy, what will be my first alone, i will be in front of him, i have truly loved him, i love him very much, i will continue to do it even further.
ो हमेश खुशीसे रहे ो ख़ुशी से हेतो मेबी खुश रहूँगा मेरा क्या पहेला भी अकेला त आगे बी रहूँगा उससे सच्चा प्यार किया है मैंने में बोहोत प्यार करता हूँ उससे आगेभी करता रहूँगा
Last Update: 2024-10-14
Usage Frequency: 1
Quality:
Reference:
look like this-- let me do it in a different color-- the circle would look something like-- make sure it's a circle-- well, it's supposed to be centered at 0,0, but that's close enough-- so its center will be right here, and the radius if you go from the center to any point along that circle will have a distance of r, so if you go from there to there it's r, from there to there it's r, from there to there it's r, and to some degree, this formula, all it is is an extension of the distance formula, which is really just the extension of the pythagorean theorem. so for example, the distance formula, if i want to know the distance between some point x,y and the point 0,0, what you do is, you take the difference of the x's-- so x minus 0-- you square that, and then you add that to the distance between the y's squared-- so that's one y point minus 0y-- y is equal to 0-- square that, and that is equal to the distance squared. so if you simplify this, x minus 0 squared, that's just x squared plus-- and this is just y squared is equal to distance squared.
pythagorean प्रमेय का विस्तार। तो उदाहरण के लिए, दूरी फार्मूला अगर मैं जानना चाहता हूँ, कुछ बिंदु के बीच दूरी एक्स, वाई और बिंदु 0, 0, तुम क्या है, आप एक्स - के अंतर ले 0 - शून्य एक्स तो तुम कि स्क्वायर, और फिर आप जो के बीच की दूरी को जोड़ें y's चुकता - इतना है कि 0y शून्य से एक y बिंदु-y के बराबर है 0 करने के लिए - वर्ग कि, और वह दूरी चुकता करने के लिए बराबर है। तो अगर आप इस सरल, 0 शून्य से एक्स चुकता, कि बस है एक्स चुकता प्लस - और यह सिर्फ वाई चुकता बराबर है दूरी चुकता करने के लिए। तो अनिवार्य रूप से, इस समीकरण है कि सभी की साजिश अंक कर रहे हैं वही डी दूर, दूर, डी की दूरी 0, 0, बिंदु से और वह सिर्फ एक चक्र है। और मैं तुम्हें लगता है कि इसके बारे में, मुझे लगता है कि मैं वास्तव में दिखाया दूँगा यह आपको एक दूरी फार्मूला वीडियो, लेकिन दूरी में सूत्र बस pythagorean प्रमेय से बाहर आता है। और अगर यह तुम्हारे लिए पूरी तरह से स्पष्ट नहीं है, बस लगता है कि के बारे में एक छोटा सा है, और यह उम्मीद है कि बन गया हूँ एक थोड़ा सा और अधिक स्पष्ट। लेकिन वैसे भी, यह शायद था - तुम शायद पहले से ही यह जानता था, और वास्तव में सिर्फ अगर हम था बिंदु घर हिट के लिए इस एक्स चुकता प्लस चुकता वाई की तरह समीकरण के लिए 9 बराबर है, इस चक्र के ग्राफ इस तरह दिखेगा। तो है कि x-अक्ष, कि y-अक्ष है, तब आरेखित करें खुद सर्कल, सर्कल की तरह काफी है, बंद - लग रहा है और फिर दूरी या चक्र के केंद्र से त्रिज्या, कि 3 होने जा रहा है। वहाँ एक 9 है यहाँ, क्यों त्रिज्या 9 नहीं है? क्योंकि यह चुकता त्रिज्या है ओह, यह है। मैं सिर्फ तुम्हें पता चला तो मूल सूत्र याद रखें। squared प्लस x y चुकता करने के लिए r वर्ग के बराबर है। यह ठीक है यहाँ है, तो r चुकता, तो अगर आर चुकता से r 3 करने के लिए बराबर है 9 के लिए बराबर है। यह शून्य से 3 हो सकता है। मेरा मतलब है, यह सकता है, तुम एक नकारात्मक त्रिज्या, हो सकता है या यदि डे तुमने क्या आप सिर्फ दूसरी दिशा में जा रहे हैं, लेकिन यह एक ही बात है। तो त्रिज्या 3 करने के लिए बराबर है। तो है कि एक चक्र है, और वह बहुत सीधा है, लेकिन में है एक बहुत बीजगणित के वर्गों, वे थोड़ा इस मुद्दे जटिल सा वृत्त बदलता द्वारा। तो चलो बस इस चक्र पाली। होने के बजाय - तो मुझे बस इसे फिर से लिखना हैं। तो unshifted सर्कल था एक्स चुकता प्लस चुकता y के बराबर है मुझे इसे इस तरह - लिखने के लिए - चुकता, 3 करने के लिए बराबर है कि 9, के रूप में एक ही बात और चलो कहना है कि नए चक्र स्थानांतरित सर्कल, है शून्य से 1 y प्लस 2 प्लस चुकता एक्स चुकता 3 चुकता करने के लिए बराबर है। अब अचानक यह सच में जटिल और कठिन लग रहा है और सब आराम है, लेकिन आप सभी को यह पहचान करने के लिए है, हम बस शून्य से 1 x प्रतिस्थापित किया-वूप्स गड़बड़ कर दी, के लिए अपने सूचक को। हम सिर्फ एक एक्स शून्य से 1 एक्स के लिए प्रतिस्थापित किया और हम सिर्फ एक y प्लस 2 वाई के लिए प्रतिस्थापित किया। तो यह इस चक्र के रूप में एक ही मूल स्वरूप है और तथ्य यह है कि हम जोड़ा या की संख्या एक्स से subtracted और y's हमें बताता है कि हम सर्कल, स्थानांतरित कर दिया और अब अगले स्पष्ट प्रश्न है, जहां आप इसे करने के लिए बदलाव किया? और आपका आवेग, ओह हो सकता है, शायद अच्छी तरह से मैं इसे करने के लिए स्थानांतरित कर दिया गया, अपने अंतर्ज्ञान के केंद्र के बजाय 0, 0 होने के नाते, हो सकता है कहते हैं कि, अच्छी तरह से करने के लिए, अब पर नकारात्मक 1, 2 केंद्र है। और तुम लगभग सही होगा को छोड़कर तुम बिल्कुल नहीं होगा सही जवाब के विपरीत। नई केन्द्र है अब एक्स के सकारात्मक 1 के बराबर है और y शून्य से 2 के बराबर है। और कि तुम पहले - और आप के लिए unintuitive हो सकती है वीडियो के कुछ देखना चाहते हो सकता है, मुझे लगता है कि मैं उन्हें किया है पहले से ही, या मैं हमेशा के लिए, पर स्थानांतरण उद्देश्य है कार्य - लेकिन जिस तरह से इसके बारे में सोचने के लिए है केंद्र यहाँ है एक्स 0 के बराबर है। तो जब एक्स और वाई 0 के बराबर है एक्स चुकता प्लस चुकता y है 0, तुम बिल्कुल 0 केंद्र, से दूर कर रहे हैं या हम केंद्र में कर रहे हैं। अगर हम चाहते हो - अगर हम चाहते हैं तो अब एक्स 0 से दूर किया जा करने के लिए हमारे नए केंद्र, यह शब्द 0 के बराबर हो गया है। और अगर बस जब एक्स इस अवधि equaled 0 के बराबर था की तरह- 0, तो अब हमें हमारे नए चक्र के केंद्र में तो करने के लिए किया जा करने के लिए बोलो, इस शब्द 0 होना चाहिए। एक्स 1 के बराबर है तो नए केन्द्र से कम हो गया है। इसी प्रकार, यह गया हो 0 है, और इसलिए है केंद्र पर है वाई 2 के बराबर है। एक और तरीका है इसके बारे में लगता है कि यह - चलो कहते हैं कि जब है वाई, तुम्हें पता है क्या यहाँ होता है जब वाई के लिए 2 के बराबर है। जब y 2 से बराबर है चक्र का जो भी हिस्सा हम में हैं। हम कर रहे हैं चक्र का कुछ हिस्सा है, मैं वास्तव में आकर्षित कर सकता यह, जब वाई के लिए 2 के बराबर है। जब y 2 से बराबर है चलो कहते हैं कि इस त्रिज्या 3 है, हम शायद कर रहे हैं सही सर्कल पर वहाँ के आसपास। हम वहाँ हो सकता है या हम वहाँ हो सकता है। अब हम तो अब जा रहा है पर 0, 0 के बजाय सर्कल, स्थानांतरण कर रहे हैं, हम 2 शून्य से 1 से कम हो जा रहे हैं। तो अब हम नए केंद्र पर जा रहे हैं एक्स 1 के बराबर है है, y शून्य से 2 के बराबर है, नए केन्द्र है वहाँ है, और अगर मैं थे नई वृत्त बनाने के लिए, यह कुछ इस तरह देखना होगा। मैं अपनी पूरी कोशिश के लिए यह आकर्षित करने के लिए जा रहा हूँ अब भी रूप में एक सर्कल और बताएंगे कि इसे स्थानांतरित कर दिया गया है। नहीं, यह अच्छा नहीं है। मुझे यह आकर्षित की तरह-मैं गलत बटन दबाया। यह अच्छा नहीं है। मुझे यह वहीं आरेखित करें। वह पास पर्याप्त है। मैं यह कर रखने के लिए नहीं है। हम क्या किया है, तो हम इस चक्र 2 नीचे स्थानांतरित कर दिया गया, और सही 1 करने के लिए। तो अगर हम इसके केंद्र बिन्दु ले, हम 2 नीचे चला गया और सही 1 करने के लिए। और इसलिए जब y 2 forza के लिए बराबर था के बारे में यहाँ, अगर आपको लगता है हम इस बिंदु पर किया जा सकता था या यह इंगित करें, तरह का नए चक्र के बराबर अंक यहाँ होने जा रहे हैं। तुम कहाँ जा रहे हैं यहाँ, मोटे तौर पर होने जा रहे हैं नीचे और दाईं ओर। और है कि एक ही व्यवहार में सर्कल के लिए वहाँ है, इस पूरी बात करने के लिए 2 के बराबर होना चाहिए। इतना कि एक ही बिंदु पर चक्र, अगर यह पूरी बात है 2 करने के लिए - बराबर हो सकता है क्योंकि यह होने जा रहा है के लिए जा रही इस समीकरण में व्यवहार की ही तरह और मुझे आशा है कि मैं नहीं कर रहा हूँ आप भ्रमित वहाँ - तो नए y 0, हो गया है और आप इसे वहाँ देखते हैं। अब इन अंकों की दोनों में, y 0 के बराबर है। तो मुझे पता है कि एक छोटी सी unintuitive है, लेकिन मैं तुम्हें चाहता हूँ बैठने के लिए और एक बहुत कुछ के बारे में सोचो। मेरा मतलब है, तुम सिर्फ यह है कि यह विपरीत है याद कर सकते, जब आपके पास शून्य से 1 और वाई के अलावा है कि यह वास्तव में आप है 2 x एक्स के लिए स्थानांतरित कर दिया गया है बराबर है-केंद्र अब 1, 2, शून्य से है या तुम, अगर आप की तरह, कि क्या इस 0 करता है याद कर सकता और क्या इस 0 बनाता है, और है कि अपने नए केंद्र। लेकिन मैं सच में लगता है कि इसके बारे में करने के लिए आप चाहते हैं यह वास्तव में एक बदलाव है। और अगर तुम यह ग्राफ के थे, निश्चित रूप से, आप रहे थे यह बात वहाँ मिलता है। वैसे भी, मुझे कितना समय मैं देख। वास्तव में मैं भी समय का ध्यान रखना नहीं किया था। मैं तुम्हें वहाँ छोड़ दूँगा, मैं यह अगले वीडियो में जारी करेंगे जहाँ मैं एक छोटा सा ellipses के बारे में बात करेंगे।
Last Update: 2019-07-06
Usage Frequency: 4
Quality:
Reference: