Você procurou por: pi (Hindi - Espanhol)

Contribuições humanas

A partir de tradutores profissionais, empresas, páginas da web e repositórios de traduções disponíveis gratuitamente

Adicionar uma tradução

Hindi

Espanhol

Informações

Hindi

pi ()

Espanhol

pi()

Última atualização: 2018-12-24
Frequência de uso: 6
Qualidade:

Hindi

cos( pi () / 2) बराबर है: 0

Espanhol

cos(pi()/ 2) es igual a 0

Última atualização: 2018-12-24
Frequência de uso: 3
Qualidade:

Hindi

pi की कोज्या शून्य से 1 है।

Espanhol

el coseno de pi es menos 1.

Última atualização: 2019-07-06
Frequência de uso: 1
Qualidade:

Hindi

sin( pi () / 2) बराबर है: 1

Espanhol

sin(pi()/ 2) es igual a 1

Última atualização: 2018-12-24
Frequência de uso: 3
Qualidade:

Hindi

एक वैध एक्सप्रेशन भरें, उदाहरण के लिए 2 या pi

Espanhol

introducir una expresión válida, por ejemplo 2*pi o e/ 2.

Última atualização: 2018-12-24
Frequência de uso: 3
Qualidade:

Hindi

आरंभिक एक्स- बिन्दु भरें, उदाहरण के लिए 2 या pi

Espanhol

introduzcaun punto x inicial, por ejemplo 2 o pi

Última atualização: 2018-12-24
Frequência de uso: 3
Qualidade:

Hindi

प्लाट सीमा का निम्नतम किनारा भरें. 2* pi जैसे एक्सप्रेशन भी स्वीकार्य हैं.

Espanhol

introduzca el límite inferior para el intervalo del gráfico. las expresiones del tipo 2*pi están permitidas.

Última atualização: 2018-12-24
Frequência de uso: 3
Qualidade:

Hindi

मूल्य को कोई संख्या होना चाहिए (उदा. "pi^2")

Espanhol

el valor debe ser un número (por ejemplo « pi^2 »)

Última atualização: 2018-12-24
Frequência de uso: 3
Qualidade:

Aviso: contém formatação HTML invisível

Hindi

इंटीग्रल के लिए आरंभिक एक्स- मूल्य या एक्सप्रेशन भरें, उदाहरण के लिए 2 या pi/ 2

Espanhol

introduzca el valor x inicial o expresión para la integral, por ejemplo 2 o pi/2

Última atualização: 2018-12-24
Frequência de uso: 3
Qualidade:

Hindi

मैं पिछले कुछ किया था के बाद से मैं थोड़ा सा लगना रहा हूँ antiderivatives. ताकि हम मिल एक्स चुकता, हम एक्स चुकता से अधिक 2 pi बार जाओ।

Espanhol

he estado un poco oxidado desde la ultima vez que hice un poco de anti-derivativos. así que conseguimos x al cuadrado, conseguimos x al cuadrado sobre 2. ...

Última atualização: 2019-07-06
Frequência de uso: 1
Qualidade:

Hindi

16 pi शून्य से 8 pi, कि 8 pi के बराबर होती है। और फिर एक से अधिक है। 32 से अधिक 8 pi.

Espanhol

el 16 pi menos 8 pi, igual 8 pi. y luego esto es un mas. el 32 mas 8 pi.

Última atualização: 2019-07-06
Frequência de uso: 1
Qualidade:

Hindi

1 बार ई 1 करने के लिए। तो यह ई के बराबर होती है। तो हम बात 1 अल्पविराम ई में उस बिंदु पर यही ध्यान में कह रहे हैं 1 प्वाइंट अल्पविराम 2.71, जो भी हो, जो भी हो। तो क्या बात है? कि इस बिंदु है। तो यह ठीक है यहाँ। 2 इंगित करें, यह ठीक है यहाँ, ई 1 प्वाइंट अल्पविराम ई है। इस समीकरण का पता लगाना है तो हम क्या करना चाहते हैं इस बिंदु के लिए लाइन स्पर्शज्या। तो क्या हम क्या करने जा रहे हैं हम यह द्वारा हल करने के लिए जा रहे हैं जो सिर्फ व्युत्पन्न है अपनी ढलान बाहर figuring उस बिंदु पर। तो हम पर व्युत्पन्न बाहर आंकड़ा है बिल्कुल इस बिंदु। और फिर हम क्या हम बीजगणित समझ से बाहर करने के लिए 1 से सीखा का उपयोग करें अपने समीकरण है, और हम इसे यहाँ, बस पुष्टि करते हैं कि ग्राफ हूँ हम वास्तव में समीकरण स्पर्शरेखा लाइन के बाहर सोचा। तो पहली बात हम जानना चाहता हूँ की ढलान स्पर्शरेखा लाइन है, और वह सिर्फ व्युत्पन्न इस बिंदु पर है। जब एक्स 1 करने के लिए, या बिंदु 1 अल्पविराम ई में बराबर है। तो क्या यह व्युत्पन्न है? तो एफ एक्स के प्रधानमंत्री। एफ प्रधानमंत्री एक्स की अच्छी तरह से करने के लिए, समान है, इस की तरह लग रहा है एक उत्पाद के शासन के लिए काम। क्योंकि हम जानते हैं कि बाहर व्युत्पन्न x, का पता लगाने के लिए हम पता है कैसे व्युत्पन्न x, करने के लिए ई का पता लगाने के लिए और वे बस एक दूसरे से गुणा कर रहे हैं। तो उत्पाद नियम हमें मदद करते हैं। इस बात के व्युत्पन्न के बराबर होने जा रहा है व्युत्पन्न की पहली अभिव्यक्ति की पहला समारोह। तो बस 1, बार second फ़ंक्शन एक्स के व्युत्पन्न है, ई एक्स, प्लस पहली समारोह में, x, बार बार second फ़ंक्शन के व्युत्पन्न। तो क्या ई x के व्युत्पन्न है? और है कि क्या मैं इतनी संख्या ई के बारे में, आश्चर्यजनक लगता है या फ़ंक्शन ई x करने के लिए, है कि व्युत्पन्न ई का करने के लिए x x के ई है। इस वक्र के किसी भी बिंदु पर ढलान के बराबर है फ़ंक्शन का मान। तो यह व्युत्पन्न है। तो क्या बिंदु पर इस कार्य के व्युत्पन्न है एक्स 1 करने के लिए, या 1 प्वाइंट अल्पविराम ई में बराबर है? तो हम सिर्फ यह मूल्यांकन। हम कहते हैं कि एफ प्रधानमंत्री 1 का 1 बार 1 समय ई प्लस 1 के बराबर है ई 1 करने के लिए, ठीक है, कि बस बराबर है ई प्लस ई। और वह सिर्फ 2 से बराबर है ई। और तुम्हें पता है, हम क्या बाहर समझ सकता है कि नंबर, ई बस है यह लिखने के लिए आसान है, क्योंकि एक निरंतर संख्या है, लेकिन हम ई लिख ई 2.7 वगैरह, और अंकों की एक अनंत संख्या के अलावा, तो हम बस 2 ई लिख। तो इस समीकरण की ढलान है, या यह ढलान है वक्र से जब एक्स एक करने के लिए, या उस बिंदु पर हो के बराबर है 1e, या 1 के 1 एफ है। तो क्या स्पर्शरेखा रेखा के समीकरण है? तो चलो आगे बढ़ो और इस फार्म ले लो, समीकरण जा रहा है y बराबर करने के लिए, मैं सिर्फ यह लिख रहा हूँ हो रहा है, तुम्हें पता है, कि तुम फार्म का नहीं बिंदु ढलान, एमएक्स प्लस बी बीजगणित में सीखा है। तो ढलान 2 ई होने जा रहा है। हम बस कि यहाँ सीख लिया। जब एक्स 1 के बराबर है व्युत्पन्न है। तो 2 ई बार एक्स प्लस y अवरोधन। तो अगर हम y-बाहर का कटाव बिंदु यह आंकड़ा कर सकते हैं रेखा, हम कर रहे हैं। हम समीकरण स्पर्शरेखा लाइन के बाहर लगा है। हम तो कैसे करते हो? वैसे, अगर हमें पता था कि एक y या एक एक्स जहां इस समीकरण चला जाता है, के माध्यम से हम फिर ब के लिए बी को हल कर सकते। और हम जानते हैं एक y और एक्स इस समीकरण को पूरा करने वाला। 1 प्वाइंट अल्पविराम ई। बिंदु जहाँ हम स्पर्शरेखा लाइन, सही ढूँढ़ने की कोशिश कर रहे हैं? यह कहना है तो, 1 अल्पविराम ई, यह है जहाँ हम करना चाहते हैं स्पर्शरेखा पंक्ति ढूँढें। और परिभाषा के अनुसार, स्पर्शरेखा लाइन के लिए जा रहा है उस समय के माध्यम से चलते हैं। तो चलो यहाँ है, या इस में वापस उन points स्थानापन्न इस समीकरण में वापस इंगित करें, और तब ब के लिए बी का समाधान। तो, वाई ई के लिए बराबर है 2 करने के लिए बराबर है ई, कि बस ढलान पर है कि, एक्स, 1, प्लस बी बार बार इंगित करें। यह तुम, को भ्रमित हो सकता है क्योंकि ई, तुम, ओह, कहता हूँ ई, कि एक चर है? नहीं, यह एक संख्या है, याद है, यह pi की तरह है। यह एक संख्या है। तुम जो भी 2.7 वहाँ स्थानापन्न कर सकते हैं, लेकिन हम नहीं कर रहे हैं कि, क्योंकि यह साफ है। और चलो का समाधान। ताकि आप प्राप्त ई 2 ई प्लस बी करने के लिए बराबर है। चलो दोनों पक्षों से 2 ई घटाना। तुम मिल बी ई 2 ई शून्य के बराबर है। बी ई शून्य के बराबर है। अब हम कर रहे हैं। क्या स्पर्शरेखा रेखा के समीकरण है? यह y है 2 बार ई के लिए बराबर है एक्स प्लस बी। लेकिन, तो यह शून्य से ई है शून्य से ई, बी है। तो यह स्पर्शरेखा रेखा के समीकरण है। यदि आप इन e's वहाँ की तरह नहीं, तुम कि जगह ले सकता संख्या के साथ 2.7 वगैरह, और यह 5 बिंदु बन जाएगा कुछ है, और यह सिर्फ 2.7 शून्य से कुछ होना चाहिए। लेकिन इस neater लग रहा है। और हम पुष्टि करते हैं। चलो पुष्टि करते हैं कि इस छोटी सी रेखांकन कैलकुलेटर का उपयोग करें कि वास्तव में स्पर्शरेखा रेखा के समीकरण है। तो मुझे इसे यहाँ में लिखें। तो यह 2, 2 बार ई टाइम्स है एक्स, ठीक है, कि ई शून्य से 2ex है। और हमें इस लाइन ग्राफ। हम वहाँ जाते हैं। यह इसे graphed. और सूचना है कि उस पंक्ति है, कि लाइन हरे रंग, मैं अगर पता नहीं तुम कर सकते हैं, शायद मैं इस लिए यह बड़ा बनाने की जरूरत है ऊपर, bolder दिखाओ। मैं नहीं जानता कि अगर मदद मिलती है। लेकिन अगर तुम यहाँ है, तो इस लाल, यह हमारा मूल है देखो समीकरण, एक्स, कि इस अवस्था है के लिए ई x. हम स्पर्शरेखा लाइन का समीकरण जानना चाहता हूँ एक्स पर 1 के बराबर है। तो यह मुद्दा एक्स 1 के बराबर है। और जब एक्स 1 के बराबर है, ई, ठीक है, तुम कर सकते हो सिर्फ एक्स के एफ है उस पाने के लिए वापस मूल समीकरण में विकल्प है। तो यह है प्वाइंट, 1 अल्पविराम ई। तो इस समीकरण स्पर्शरेखा रेखा की, अपनी ढलान होने जा रहा है इस बिंदु पर व्युत्पन्न। तो हम इस समारोह के व्युत्पन्न का हल, और मूल्यांकन किया यह एक्स पर 1 के बराबर है। कि क्या हम यहाँ किया है। हमें व्युत्पन्न, मूल्यांकन एक्स बराबरी 1 बाहर लगा। और इसलिए हम ने कहा, ठीक है, ढलान। ढलान पर जब एक्स 1 और वाई के लिए बराबर है करने के लिए ई, के बराबर है ढलान के उस बिंदु पर 2 ई के लिए बराबर है। और हम कि से व्युत्पन्न समझ से बाहर है। और फिर हम सिर्फ हमारे बीजगणित 1 कौशल जानने के लिए इस्तेमाल उस रेखा का समीकरण। और कैसे हम क्या किया है? कि बस व्युत्पन्न है, क्योंकि हमें पता था कि ढलान उस बिंदु पर। और फिर हम सिर्फ वाई के लिए कटाव बिंदु को हल करने के लिए है। और जिस तरह से हम किया है कि हम ने कहा, ठीक है, 1 प्वाइंट अल्पविराम ई है इस ग्रीन लाइन पर रूचि है। तो हम उस में प्रतिस्थापित किया है, और हमारे y अवरोधन के लिए हल, जो हम ई, और सूचना के रूप में शून्य से है कि इस लाइन पर इस शाफ़्ट ई, के बारे में है कि शून्य से intersects शून्य से कुछ 2.7। और हम यह वहाँ है। हमें पता चला है कि, और नेत्रहीन, यह पता चलता है कि इस स्पर्शरेखा लाइन है। वैसे भी, आशा है कि तुम कि अस्पष्ट उपयोगी पाया। अगर तुमने किया था, तुम शुक्रिया अदा करना चाहिए [?

Espanhol

1 por e elevado a 1 que es igual a e estarmos diciendo que en el punto 1 coma e, esto es en el punto 1 coma 2.71, lo que sea, blah blah

Última atualização: 2019-07-06
Frequência de uso: 1
Qualidade:

Consiga uma tradução melhor através
8,951,810,407 de colaborações humanas

Usuários estão solicitando auxílio neste momento:



Utilizamos cookies para aprimorar sua experiência. Se avançar no acesso a este site, você estará concordando com o uso dos nossos cookies. Saiba mais. OK