Results for teasing translation from English to Persian

Human contributions

From professional translators, enterprises, web pages and freely available translation repositories.

Add a translation

English

Persian

Info

English

you're teasing me

Persian

شما من را دست انداختید

Last Update: 2011-10-24
Usage Frequency: 1
Quality:

English

that kid is teasing you .

Persian

داره سربه سرت ميذاره .

Last Update: 2011-10-24
Usage Frequency: 1
Quality:

English

then have you been teasing me?

Persian

پس شما من را دست انداخته اید؟

Last Update: 2011-10-24
Usage Frequency: 1
Quality:

English

now i am confident you are teasing .

Persian

حالا ديگه مطمئن شدم كه داريد شوخي مي‌كنيد .

Last Update: 2011-10-24
Usage Frequency: 1
Quality:

English

oh no, brother, they are just teasing me.

Persian

اه نه برادر اونا دستم انداختن

Last Update: 2011-10-24
Usage Frequency: 1
Quality:

English

come on , be serious , duo . stop teasing me .

Persian

دست بردار جدي باش دوو . منو دست ننداز .

Last Update: 2011-10-24
Usage Frequency: 1
Quality:

English

you keep teasing about how were two of a kind .

Persian

يه سره داري درباره اين ميگي . که ما مثل هم هستيم .

Last Update: 2011-10-24
Usage Frequency: 1
Quality:

English

but i didnt say its ridiculous . im teasing you .

Persian

اما من نگفتم که اون مضصکه سر به سرت گذاشتم .

Last Update: 2011-10-24
Usage Frequency: 1
Quality:

English

now youre teasing me . oh , no . and he did save me .

Persian

داري سر به سرم ميزاري نه ، اون منو نجات داد .

Last Update: 2011-10-24
Usage Frequency: 1
Quality:

English

id hidden because olive hornby was teasing me about my glasses .

Persian

من اين جا قايم شده بودم چون اوليور عينك من را مسخره ميكرد .

Last Update: 2011-10-24
Usage Frequency: 1
Quality:

English

he's just teasing me because of my mistake at the palace!

Persian

اون فقط داشت به خاطر اشتباهم در قصر من رو اذيت مي كرد

Last Update: 2011-10-24
Usage Frequency: 1
Quality:

English

*hostile hallways: bullying, teasing, and sexual harassment in school.

Persian

"heterophobia: sexual harassment and the future of feminism".

Last Update: 2016-03-03
Usage Frequency: 1
Quality:

Warning: Contains invisible HTML formatting

English

and if i say, "i'm sorry about that," it sounds like i'm teasing you

Persian

اگه من بگم در این مورد متأسفم به نظر میاد من دارم باهات شوخی میکنم

Last Update: 2011-10-24
Usage Frequency: 1
Quality:

Warning: Contains invisible HTML formatting

English

“impossible, mr. bennet, impossible, when i am not acquainted with him myself; how can you be so teasing?”

Persian

"غیرممکن است آقای بنت، غیرممکن است. وقتی خود من با آقای بینگلی آشنا نشده باشم، چطور می‌توانم؟ تو چرا این‌قدر سربه‌سرم می‌گذاری؟"

Last Update: 2021-01-10
Usage Frequency: 1
Quality:

Warning: Contains invisible HTML formatting

English

and so with many privacy provisions put in place to protect everyone who was recorded in the data, we made elements of the data available to my trusted research team at mit so we could start teasing apart patterns in this massive data set, trying to understand the influence of social environments on language acquisition.

Persian

با در نظر گرفتن حفظ بسیاری از مسایل شخصی برای محافظت از تمام کسانی که از اونها فیلم گرفته شده، ما اجزای اطلاعات رو در اختیار تیم تحقیقاتی مورد اعتمادم در mit قرار دادیم تا شروع کنیم ساختارهایی رو در این مجموعه عظیم داده ها دربارهً تاثیر محیط های اجتماعی روی اکتساب زبان بیابیم.

Last Update: 2015-10-13
Usage Frequency: 1
Quality:

English

sometimes i stayed a beat longer on a take to get that little sparkle in their eyes... you can see a lot of playfulness in the quick cuts back and forth when they are teasing each other, but then there are also certain moments that vera would give a little raise of an eyebrow, or george would give the same thing.

Persian

ناتالی باعث می‌شود که رایان نزد خواهرش که تازه ازدواج کرده برود و با آلکس رابطه داشته باشد و این گونه است که رایان به فکر تغییر می‌افتد...* جورج کلونی در نقش رایان بیگنام* آنا کندریک در نقش ناتالی کینر* ملنی لینسکی در نقش جولی بیگنامپا در هوا اقتباسی است از رمانی با همین نام نوشته والتر کیرن در سال ۲۰۰۱.

Last Update: 2016-03-03
Usage Frequency: 1
Quality:

English

the case study followed a methodology that included an exploratory phase conducted to select and engineer potential features, the development of a performance metric in alignment with the specific goals of the case study and the creation of an experimental design to systematically analyse the success rate of different algorithms. our results indicate that adding engineered features in the data, namely agility, outperformed other experiments leading to the final solution. an important contribution is the novel application of machine learning in predicting supply disruptions. our results are promising as they present a significant improvement in the prediction of disruptions with limited internal historical data available to the oem. however, a key learning is that the application of machine learning in this particular field presents several challenges. firstoftheseisthatadisruptionproblemintheindustrybydefinitionpresentsclassimbalance:therearefewerdisrupted orders than successful orders. similar issues have been observed in other industrial machine learning problems such as quality issues on a production line. secondly, disruptions on supply might be dependent on a variety of external factors such as traffic, weather, machine breakdowns and thus their combination might present seemingly random patterns when using only internally available data. complimentary data from external, publicly available sources or supply chain partners might help increase prediction performance. the third issue is the curse of dimensionality. when the number of variables in the feature space is high, data relating to each attribute becomes sparse, hindering statistical significance. we tried to mitigate this issue by using a cut off value of five samples of each attribute during the pre-processing stage, however, more experimentation may be necessary. we have shown that it is feasible to generate augmented features that improve the results of the predictions. it appears that agility in this case had a positive impact on performance. this feature might not be appropriate for other industrial settingsormightneedtobefurtherfine-tunedusingproductionvolumedata.similarly,itsoptimaltimewindowmayalsobe different from case to case. teasing out appropriate features from data and optimising their use requires domain knowledge, which we argue should underpin the machine learning process in industrial applications such as the one presented in this paper. ourcasestudydomain,acomplexassetmanufacturingcompany,mayinduceotherlimitationstogeneralisationtowards different industries, as supplier delays and their management may be differently assessed. as with single case studies in general, the selected company may possess inherent characteristics strongly different to other companies. in addition, the timeframe of the analysis may describe a specific state of the supply chain. several further avenues of research needs to be taken. the focus of dataset augmentation has relied on constructed features, excluding the use of external data. this provides an opportunity for future research. for example, some preliminary work has been done around the extraction of the localisation of suppliers from public sources of data, and the creation of a feature relying on this information, potentially allowing the learning algorithm to deduce location-based relationships. additionally, further research is needed to improve the performance of predictions, by testing new methods and optimising the learning process. for example, the confidence level of predictions could be used to generate predictions for orders within certain confidence only, further improving the precision and recall. the classification-based approach we have taken has relied on well-known classification algorithms and a frequentist approach. other approaches such as bayesian models, or decision trees may be worth experimenting with as they might be useful in estimating underlying probability distributions of the feature space.

Persian

چندین راه تحقیق دیگر باید مورد استفاده قرار گیرد. تمرکز افزایش داده ها به استثنای استفاده از داده های خارجی به ویژگی های ساخته شده متکی است. این فرصتی را برای تحقیقات آینده فراهم می کند. به عنوان مثال ، برخی کارهای مقدماتی در مورد استخراج محلی سازی تأمین کنندگان از منابع عمومی داده و ایجاد ویژگی متکی به این اطلاعات انجام شده است ، که به طور بالقوه به الگوریتم یادگیری اجازه می دهد روابط مبتنی بر مکان را استنباط کند.

Last Update: 2021-05-21
Usage Frequency: 1
Quality:

Reference: Anonymous

Get a better translation with
9,155,992,210 human contributions

Users are now asking for help:



We use cookies to enhance your experience. By continuing to visit this site you agree to our use of cookies. Learn more. OK